This manual contains important safety, performance and service information. Read it before you take the first ride on your new bicycle, and keep it for reference.

AN IMPORTANT MESSAGE TO PARENTS:
This Manual contains important safety information. For your child’s safety, it is your responsibility to review this information with your child and make sure that your child understands all warnings, cautions, instructions and safety topics. We recommend that you periodically review and reinforce the information in this Manual with younger riders.
A special note for parents:
As a parent or guardian, you are responsible for the activities and safety of your minor child, and that includes making sure that the bicycle is properly fitted to the child; that it is in good repair and safe operating condition; that you and your child have learned and understand the safe operation of the bicycle; and that you and your child have learned, understand and obey not only the applicable local motor vehicle, bicycle and traffic laws, but also the common sense rules of safe and responsible bicycling. As a parent, you should read this manual, as well as review its warnings and the bicycle’s functions and operating procedures with your child, before letting your child ride the bicycle.

WARNING: Make sure that your child always wears an approved bicycle helmet when riding; but also make sure that your child understands that a bicycle helmet is for bicycling only, and must be removed when not riding. A helmet must not be worn while playing, in play areas, on playground equipment, while climbing trees, or at any time while not riding a bicycle. Failure to follow this warning could result in serious injury or death.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL WARNING</td>
<td>p. 2</td>
</tr>
<tr>
<td>A special note for parents</td>
<td>p. 2</td>
</tr>
<tr>
<td>1. First</td>
<td></td>
</tr>
<tr>
<td>A. Bike Fit</td>
<td>p. 4</td>
</tr>
<tr>
<td>B. Safety First</td>
<td>p. 4</td>
</tr>
<tr>
<td>C. Mechanical Safety Check</td>
<td>p. 4</td>
</tr>
<tr>
<td>D. First Ride</td>
<td>p. 5</td>
</tr>
<tr>
<td>2. Safety</td>
<td></td>
</tr>
<tr>
<td>A. The Basics</td>
<td>p. 6</td>
</tr>
<tr>
<td>B. Riding Safety</td>
<td>p. 6</td>
</tr>
<tr>
<td>C. Off Road Safety</td>
<td>p. 7</td>
</tr>
<tr>
<td>D. Wet Weather Riding</td>
<td>p. 8</td>
</tr>
<tr>
<td>E. Night Riding</td>
<td>p. 7</td>
</tr>
<tr>
<td>F. Bicycling in Traffic</td>
<td>p. 9</td>
</tr>
<tr>
<td>G. Downhill, Stunt or Competition Biking</td>
<td>p. 9</td>
</tr>
<tr>
<td>H. Changing Components or</td>
<td></td>
</tr>
<tr>
<td>Adding Accessories</td>
<td></td>
</tr>
<tr>
<td>3. Fit</td>
<td></td>
</tr>
<tr>
<td>A. Standover Height</td>
<td>p. 11</td>
</tr>
<tr>
<td>B. Saddle Position</td>
<td>p. 11</td>
</tr>
<tr>
<td>C. Handlebar Height And Angle</td>
<td>p. 12</td>
</tr>
<tr>
<td>D. Control Position Adjustments</td>
<td>p. 13</td>
</tr>
<tr>
<td>E. Brake Reach</td>
<td>p. 13</td>
</tr>
<tr>
<td>4. Tech</td>
<td></td>
</tr>
<tr>
<td>A. Brakes</td>
<td>p. 13</td>
</tr>
<tr>
<td>B. Wheels</td>
<td>p. 16</td>
</tr>
<tr>
<td>C. Pedals</td>
<td>p. 18</td>
</tr>
<tr>
<td>D. Bicycle Suspension</td>
<td>p. 19</td>
</tr>
<tr>
<td>E. Tires and Tubes</td>
<td>p. 20</td>
</tr>
<tr>
<td>5. Service</td>
<td></td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
</tr>
<tr>
<td>Teaching Your Child The Rules</td>
<td>p. 24</td>
</tr>
<tr>
<td>Appendix B</td>
<td></td>
</tr>
<tr>
<td>Bicycling In Traffic</td>
<td>p. 26</td>
</tr>
<tr>
<td>Appendix C</td>
<td></td>
</tr>
<tr>
<td>Wheel and Seat Post</td>
<td></td>
</tr>
<tr>
<td>Quick Release Mechanisms</td>
<td>p. 28</td>
</tr>
</tbody>
</table>
1. First

NOTE: All operators must read and understand all sections of this owner’s manual before their initial operation of the bicycle. If after reading this manual in its entirety you have any questions, please contact your authorized dealer for clarification or an explanation of specific topics that you are unsure about. Please note that not all bicycles have all of the features described in this Manual. Ask your dealer to point out the features of your bicycle.

A. Bike fit

1. Is your bike the right size? To check, see Section 3.A. If your bicycle is too large or too small for you, you may lose control and fall. If your new bike is not the right size, ask your dealer to exchange it before you ride it.

2. Is the saddle at the right height? To check, see Section 3.B. If you adjust your saddle height, make sure that you follow the Minimum Insertion instructions in Section 3.B.

4. Are the stem and handlebars at the right height for you? If not, see Section 3.C on what you can do about it.

5. Can you comfortably operate the brakes? If not, you may be able to adjust their angle and reach. See Section 3.D and 3.E for details.

6. Do you fully understand how to operate your new bicycle? If not, before you ride, have your dealer explain any functions or features which you do not understand.

B. Safety first

1. Always wear an approved helmet when riding your bike, and follow the helmet manufacturer’s instructions for fit, use and care of your helmet.

2. Do you have all the other required and recommended safety equipment? See Section 2. It’s your responsibility to familiarize yourself with the laws of the areas where you ride, and to comply with all applicable laws.

3. If your bike has wheel quick releases, do you know how to correctly operate them? Check Section Appendix B to make sure. Riding with an improperly adjusted wheel quick release can cause the wheel to wobble or disengage from the bicycle, and cause serious injury or death.

4. If your bike has clipless (“step-in”) pedals, make sure you know how they work (see Section 4.C.3). These pedals require special techniques and skills. Follow the pedal manufacturer’s instructions for use, adjustment and care.

5. Does your bike have suspension? If so, check Section 4.F. Suspension can change the way a bicycle performs. Follow the suspension manufacturer’s instructions for use, adjustment and care.

6. Do you have “toe overlap”? On smaller framed bicycles your toe may be able to contact the front wheel when a pedal is all the way forward and the wheel is turned. See section 4.C.1.

C. Mechanical Safety Check

Routinely check the condition of your bicycle before every ride.

Nuts, bolts & straps: Make sure nothing is loose. Lift the front wheel off the ground by two or three inches, then let it bounce on the ground. Anything sound, feel or look loose? Do a quick visual and tactile inspection of the whole bike. Any loose parts or accessories? If so, secure them. If you’re not sure,
ask someone with experience to check.

Tires & Wheels: Make sure tires are correctly inflated (see Section 4.G.1). Check by putting one hand on the saddle, one on the intersection of the handlebars and stem, then bouncing your weight on the bike while looking at tire deflection. Compare what you see with how it looks when you know the tires are correctly inflated; and adjust if necessary.

Tires in good shape? Spin each wheel slowly and look for cuts in the tread and sidewall. Replace damaged tires before riding the bike.

Wheels true? Spin each wheel and check for brake clearance and side-to-side wobble. If a wheel wobbles side to side even slightly, or rubs against or hits the brake pads, take the bike to a qualified bike shop to have the wheel trued.

CAUTION: Wheels must be true for the brakes to work effectively. Wheel truing is a skill which requires special tools and experience. Do not attempt to true a wheel unless you have the knowledge, experience and tools needed to do the job correctly.

Brakes: Check the brakes for proper operation (see Section 4.A). Squeeze the brake levers. Are the brake quick-releases closed? All control cables seated and securely engaged? Do the brake pads contact the wheel rim squarely and make full contact with the rim? Do the brake pads touch the wheel rim within an inch of brake lever movement? Can you apply full braking force at the levers without having them touch the handlebar? If not, your brakes need adjustment. Do not ride the bike until the brakes are properly adjusted.

Quick Releases: If your bike has front wheel, rear wheel or seat post quick releases, make sure they are properly adjusted and in the locked releases position. See Section Appendix B.

Handlebar and saddle alignment: Make sure the saddle and handlebar stem are parallel to the bike’s center line and clamped tight enough so that you can’t twist them out of alignment. See Section 3.B and 3.C. If not, adjust and tighten them.

Handlebar ends: Make sure the handlebar grips are secure and in good condition. If not, replace them. Make sure the handlebar ends are plugged. If not, plug them before you ride.

WARNING: Loose or damaged handlebar grips can cause you to lose control and fall. Unplugged handlebars can cut your body, and can cause serious injury in an otherwise minor accident.

D. First ride

When you buckle on your helmet and go for your first familiarization ride on your new bicycle, be sure to pick a controlled environment, away from cars, other cyclists, obstacles or other hazards. Ride to become familiar with the controls, features and performance of your new bike.

Familiarize yourself with the braking action of the bike (see Section 4.C). Test the brakes at slow speed, putting your weight toward the rear and gently applying the brakes, rear brake first. Sudden or excessive application of the front brake, if your bicycle has one, could pitch you over the handlebars. Applying brakes too hard can lock up a wheel, which could cause you to lose control and fall. Skidding is an example of what can happen when a wheel locks up.

If your bicycle has clipless pedals, practice getting in and out of the pedals. See paragraph B.4 above and Section 4.C.3.
Most serious bicycle injuries involve head injuries which might have been avoided if the rider had worn an appropriate helmet.

WARNING: Failure to wear a helmet when riding may result in serious injury or death.

2. Always do the Mechanical Safety Check (Section 1.C) before you get on a bike.

3. Be thoroughly familiar with the controls of your bicycle: brakes (Section 4.A) and pedals (Section 4.C).

4. Be careful to keep body parts and other objects away from the sharp teeth of chainrings; the moving chain; the turning pedals and cranks; and the spinning wheels of your bicycle.

5. Always wear:
 - Shoes that will stay on your feet and will grip the pedals. Never ride barefoot or while wearing sandals.
 - Bright, visible clothing that is not so loose that it can be tangled in the bicycle or snagged by objects at the side of the road or trail.
 - Protective eyewear, to protect against airborne dirt, dust and bugs — tinted when the sun is bright, clear when it’s not.

6. Ride at a speed appropriate for conditions. Increased speed means higher risk.

7. Before you attempt to jump, do stunt riding or race with your bike, read and understand Section 2.G. Downhill, Stunt or Competition Biking.

B. Riding Safety

1. Observe all local bicycle laws and regulations. Observe regulations about licensing of bicycles, riding on sidewalks, laws regulating bike path and trail use, and so on. Observe helmet
laws and special bicycle traffic laws. It’s your responsibility to know and obey the laws.

2. You are sharing the road or the path with others — motorists, pedestrians and other cyclists. Respect their rights.

3. Ride defensively. Always assume that others do not see you.

4. Look ahead, and be ready to avoid:
 • Vehicles slowing or turning, entering the road or your lane ahead of you, or coming up behind you.
 • Parked car doors opening.
 • Pedestrians stepping out.
 • Children or pets playing near the road.
 • Pot holes, sewer grating, railroad tracks, expansion joints, road or sidewalk construction, debris and other obstructions that could cause you to swerve into traffic, catch your wheel or otherwise cause you to lose control and have an accident.
 • The many other hazards and distractions which can occur on a bicycle ride.

5. Ride in designated bike lanes, on designated bike paths or as close to the edge of the road as possible, in the direction of traffic flow or as directed by local governing laws.

6. Stop at stop signs and traffic lights; slow down and look both ways at street intersections. Remember that a bicycle always loses in a collision with a motor vehicle, so be prepared to yield even if you have the right of way.

7. Use approved hand signals for turning and stopping.

8. Never ride with headphones. They mask traffic sounds and emergency vehicle sirens, distract you from concentrating on what’s going on around you, and their wires can tangle in the moving parts of the bicycle, causing you to lose control.

9. Never carry a passenger, unless it is a small child wearing an approved helmet and secured in a correctly mounted child carrier or a child-carrying trailer.

10. Never carry anything which obstructs your vision or your complete control of the bicycle, or which could become entangled in the moving parts of the bicycle.

11. Never hitch a ride by holding on to another vehicle.

12. Don’t weave through traffic or make any moves that may surprise people with whom you are sharing the road.

13. Observe and yield the right of way.

14. Never ride your bicycle while under the influence of alcohol or drugs.

15. If possible, avoid riding in bad weather, when visibility is obscured, at dawn, dusk or in the dark, or when extremely tired. Each of these conditions increases the risk of accident.

16. Before you attempt to jump, do stunt riding or race with your bike, read and understand Section 2.G. Downhill, Stunt or Competition Biking.

C. Off Road Safety

We recommend that children not ride off-road unless accompanied by an adult. In any event, never ride alone in remote areas.

Even when riding with others, make sure that someone knows where you’re going and when you expect to be back. Always take along some kind of identification, so that people know who you are in case of an accident; and take a couple of dollars in cash for a candy bar, a cool drink or an emergency phone call.

1. The variable conditions and hazards of off-road riding require close attention and specific skills. Start slowly on easier terrain and build up your skills. If your bike has suspension, the increased speed you may develop also increases your risk of losing control and falling. Get to know how to handle your bike safely before trying increased speed or more difficult terrain.

2. Wear safety gear appropriate to the kind of riding
you plan.

3. Don’t ride alone in remote areas. Even when riding with others, make sure that someone knows where you’re going and when you expect to be back.

4. Learn and obey the local laws regulating where and how you can ride off-road, and respect private property.

5. You may be sharing the trail with others — hikers, equestrians, other cyclists. Respect their rights.

6. Yield right of way to pedestrians and animals. Ride in a way that does not frighten or endanger them, and stay far enough away so that their unexpected moves don’t endanger you.

7. Stay on the designated trail. Don’t contribute to erosion by riding in mud or with unnecessary sliding. Don’t disturb the ecosystem by cutting your own trail or shortcut through vegetation or streams. It is your responsibility to minimize your impact on the environment. Leave things as you found them; and always take out everything you brought in.

8. Be prepared. If something goes wrong while you’re riding off-road, help may not be close.

9. Before you attempt to jump with your bike, do stunt riding or race with your bike, read and understand Section 2.G. Downhill, Stunt or Competition Biking.

D. Wet Weather Riding

WARNING: Wet weather impairs traction, braking and visibility, both for the bicyclist and for other vehicles sharing the road. The risk of an accident is dramatically increased in wet conditions.

Under wet conditions, the stopping power of your brakes (as well as the brakes of other vehicles sharing the road) is dramatically reduced and your tires don’t grip nearly as well.

This makes it harder to control speed and easier to lose control. To make sure that you can slow down and stop safely in wet conditions, ride more slowly and apply your brakes earlier and more gradually than you would under normal, dry conditions. See also Section 4.A.

E. Night Riding

Riding a bicycle at night is many times more dangerous than riding during the day. A bicyclist is very difficult for motorists and pedestrians to see. Therefore, children should never ride at dawn, at dusk or at night. Adults should not ride at dawn, at dusk or at night unless it is absolutely necessary.

WARNING: Reflectors are not a substitute for required lights. Riding at dawn, at dusk, at night or at other times of poor visibility without an adequate bicycle lighting system and without reflectors is dangerous and may result in serious injury or death.

Bicycle reflectors are designed to pick up and reflect street lights and car lights in a way that may help you to be seen and recognized as a moving bicyclist.

CAUTION: Check reflectors and their mounting brackets regularly to make sure that they are clean, straight, unbroken and securely mounted. Have your dealer replace damaged reflectors and straighten or tighten any that are bent or loose.

The mounting brackets of front and rear reflectors are often designed as brake straddle cable safety catches which prevent the straddle cable from catching on the tire tread if
the cable jumps out of its yoke or breaks.

⚠️ **WARNING:** Do not remove the front or rear reflectors or reflector brackets from your bicycle. They are an integral part of the bicycle's safety system.

Removing the reflectors may reduce your visibility to others using the roadway. Being struck by other vehicles may result in serious injury or death.

The reflector brackets may protect you from the brake straddle cable catching on the tire in the event of brake cable failure. If a brake straddle cable catches on the tire, it can cause the wheel to stop suddenly, causing you to lose control and fall.

If you must ride under conditions of poor visibility, check and be sure you comply with all local laws about night riding, and take the following strongly recommended additional precautions:

- Make sure that your bicycle is equipped with correctly positioned and securely mounted reflectors.
- Purchase and install battery or generator powered head and tail lights which meet all regulatory requirements and provide adequate visibility.
- Wear light colored, reflective clothing and accessories, such as a reflective vest, reflective arm and leg bands, reflective stripes on your helmet, flashing lights ... any reflective device or light source that moves will help you get the attention of approaching motorists, pedestrians and other traffic.
- Make sure your clothing or anything you may be carrying on the bicycle does not obstruct a reflector or light.

While riding at dawn, at dusk or at night:

- Ride slowly.
- Avoid dark areas and areas of heavy or fast-moving traffic.
- Avoid road hazards.

- If possible, ride on familiar routes.

F. Bicycling in Traffic

- **Be predictable.** Ride so that drivers can see you and predict your movements.
- **Be alert.** Ride defensively and expect the unexpected.
- Read Appendix B and learn the rules for riding in traffic which are illustrated there.

G. Downhill, Stunt or Competition Biking

⚠️ **WARNING:** Although many catalogs, advertisements and articles about bicycling depict riders jumping, racing or stunt riding, this activity is extremely dangerous and increases your risk of injury or death, and increase the severity of any injury. Remember that the action depicted is being performed by professionals with many years of training and experience. Know your limits and always wear a helmet and other appropriate safety gear. Even with state-of-the-art protective safety gear, you could be seriously injured or killed when jumping, stunt riding, riding downhill at speed or in competition.

⚠️ **CAUTION:** Bicycles and bicycle parts have limitations with regard to strength and integrity, and this type of riding can exceed those limitations.
We recommend against this type of riding because of the increased risks; but if you ignore this recommendation, at least:

• Take lessons from a competent instructor first
• Do stunts, racing or fast downhill riding only in areas designated for this type of riding
• Start with easy learning exercises and slowly develop your skills before trying more dangerous riding
• Wear a full face helmet, safety pads, and other safety gear
• Make sure by checking with your dealer that your bike is suitable for the kind of stunt or competition riding you plan to do
• Understand and recognize that the stresses imposed on your bike by this kind of activity may break or damage parts of the bicycle and void the warranty
• Take your bicycle to your dealer if anything breaks or bends. Do not ride your bicycle when any part is damaged.

If you ride downhill at speed, do stunt riding or ride in competition, you voluntarily assume an increased risk of injury or death. Have your bicycle and equipment carefully inspected by a qualified mechanic and be sure it is in perfect condition. Consult with expert riders and race officials on conditions and equipment advisable at the site where you plan to ride. Wear appropriate safety gear, including an approved full face helmet, full finger gloves, and body armor. Know the limits of your skill and experience. Ultimately, avoiding injury is your responsibility.

H. Changing Components or Adding Accessories

There are many components and accessories available to enhance the comfort, performance and appearance of your bicycle. However, if you change components or add accessories, you do so at your own risk. The bicycle’s manufacturer may not have tested that component or accessory for compatibility, reliability or safety on your bicycle. Before installing any component or accessory, including a different size tire, make sure that it is compatible with your bicycle by checking with your dealer. Be sure to read, understand and follow the instructions that accompany the products you purchase for your bicycle.

⚠️ WARNING: Failure to confirm compatibility, properly install, operate and maintain any component or accessory can result in serious injury or death.

⚠️ CAUTION: Changing the components on your bike may void the warranty. Refer to your warranty, and check with your dealer before changing the components on your bike.

3. Fit

NOTE: Correct fit is an essential element of bicycling safety, performance and comfort. Making the adjustments to your bicycle which result in correct fit for your body and riding conditions requires experience, skill and special tools. Always have your dealer make the adjustments on your bicycle; or, if you have the experience, skill and tools, have your dealer check your work before riding.

Make sure the bike fits. A bike that’s too big or too small is harder to control and can be uncomfortable.
WARNING: If your bicycle does not fit properly, you may lose control and fall. If your new bike doesn’t fit, ask your dealer to exchange it before you ride it.

A. Standover height

Standover height is the basic element of bike fit (see fig. 2). It is the distance from the ground to the top of the bicycle’s frame at that point where your crotch would be if you were straddling the bike and standing half way between the saddle and the handlebars. To check for correct standover height, straddle the bike while wearing the kind of shoes in which you’ll be riding, and bounce vigorously on your heels. If your crotch touches the frame, the bike is too big for you. Don’t even ride the bike around the block. A bike which you ride only on paved surfaces and never take off-road should give you a minimum standover height clearance of two inches (5 cm). A bike that you’ll ride on unpaved surfaces should give you a minimum of four inches (7.5 cm) of standover height clearance. And a bike that you’ll use for rough terrain, jumping or stunt riding should give you four inches (10 cm) or more of clearance.

WARNING: If you plan to use your bike for jumping or stunt riding, read Section 2.G again.

B. Saddle position

Correct saddle adjustment is an important factor in getting the most performance and comfort from your bicycle. If the saddle position is not comfortable for you, see your dealer, who has the tools and skill to change it.

The saddle can be adjusted in three directions:
1. Up and down
2. Forward and back
3. Horizontal angle

Ask your dealer to set the saddle in the position he recommends for you, and to show you how to make further adjustments.

Small changes in saddle position can have a substantial effect on performance and comfort. Only one directional change at a time, and only a small change at a time, should be made to your saddle position.

Always make sure that your seat post does not extend from the frame beyond the Minimum Insertion or Maximum Extension mark engraved on it.

WARNING: If your seat post projects from the frame beyond the Minimum Insertion or Maximum Extension mark (see fig. 3) or you cannot touch the bottom of the seat post through the bottom of the interrupted seat tube with the tip of your finger without inserting your finger beyond its first knuckle (see fig. 4), the seat post may break, which could cause you to lose control and fall.
NOTE: If your bicycle is equipped with a suspension seat post, periodically ask your dealer to check it.

⚠️ WARNING: After any saddle adjustment, be sure that the saddle adjusting mechanism is properly tightened before riding. A loose saddle clamp or seat post binder can cause damage to the seat post, or can cause you to lose control and fall. A correctly tightened saddle adjusting mechanism will allow no saddle movement in any direction. Periodically check to make sure that the saddle adjusting mechanism is properly tightened.

If, in spite of carefully adjusting the saddle height, tilt and fore-and-aft position, your saddle is still uncomfortable, you may need a different saddle design. Saddles, like people, come in many different shapes, sizes and resilience. Your dealer can help you select a saddle which, when correctly adjusted for your body and riding style, will be comfortable.

⚠️ WARNING: Some people have claimed that extended riding with a saddle which is incorrectly adjusted or which does not support your pelvic area correctly can cause short-term or long-term injury to nerves and blood vessels, or even impotence. If your saddle causes you pain, numbness or other discomfort, see your dealer.

C. Handlebar height and angle

Your bike is equipped either with a “threadless” stem, which clamps on to the outside of the steerer tube, or with a “quill” stem, which clamps inside the steerer tube by way of an expanding binder bolt. If you aren’t absolutely sure which type of stem your bike has, ask your dealer.

If your bike has a “threadless” stem, your dealer may be able to change handlebar height by moving height adjustment spacers from below the stem to above the stem, or vice versa. Otherwise, you’ll have to get a stem of different length or rise. Consult your dealer. Do not attempt to do this yourself, as it requires special knowledge.

If your bike has a “quill” stem, you can ask your dealer to adjust the handlebar height a bit by adjusting stem height.

A quill stem has an etched or stamped mark on its shaft which designates the stem’s “Minimum Insertion” or “Maximum extension”. This mark must not be visible above the headset.

⚠️ WARNING: The stem’s Minimum Insertion Mark must not be visible above the top of the headset. If the stem is extended beyond the Minimum Insertion Mark the stem may break or damage the fork’s steerer tube, which could cause you to lose control and fall.

⚠️ WARNING: On some bicycles, changing the stem or stem height can affect the tension of the front brake cable, locking the front brake or creating excess cable slack which can make the front brake inoperable. If the front brake pads move in towards the wheel rim or out away from the wheel rim when the stem or stem height is changed, the brakes must be correctly adjusted before you ride the bicycle.

Your dealer can also change the angle of the handlebar or bar end extensions.

⚠️ WARNING: An insufficiently tightened stem binder bolt, handlebar binder bolt or bar end extension clamping bolt may compromise steering action, which could cause you to lose control and fall. Place the front wheel of the bicycle
between your legs and attempt to twist the handlebar/stem assembly. If you can twist the stem in relation to the front wheel, turn the handlebars in relation to the stem, or turn the bar end extensions in relation to the handlebar, the bolts are insufficiently tightened.

D. Control position adjustments

The angle of the controls and their position on the handlebars can be changed. Ask your dealer to make the adjustments for you.

E. Brake reach

Many bikes have brake levers which can be adjusted for reach. If you have small hands or find it difficult to squeeze the brake levers, your dealer can either adjust the reach or fit shorter reach brake levers.

⚠️ WARNING: The shorter the brake lever reach, the more critical it is to have correctly adjusted brakes, so that full braking power can be applied within available brake lever travel. Brake lever travel insufficient to apply full braking power can result in loss of control, which may result in serious injury or death.

4. Tech

It's important to your safety, performance and enjoyment to understand how things work on your bicycle. We urge you to ask your dealer how to do the things described in this section before you attempt them yourself, and that you have your dealer check your work before you ride the bike. If you have even the slightest doubt as to whether you understand something in this section of the Manual, talk to your dealer.

A. Brakes

Your bicycle is equipped either with a coaster brake (described in paragraph 1 below) or with hand brakes (described in paragraph 2 below). Be sure that you understand how your bicycle’s brakes work before you take your first ride, by reading and understanding paragraph 1 or 2 and paragraph 3 below.

⚠️ WARNING:

1. Riding with improperly adjusted brakes or worn brake pads is dangerous and can result in serious injury or death.

2. Applying brakes too hard or too suddenly can lock up a wheel, which could cause you to lose control and fall. Sudden or excessive application of the front brake may pitch the rider over the handlebars, which may result in serious injury or death.

3. Some bicycle brakes, such as disc brakes (fig. 6) and linear-pull brakes (fig. 7), are extremely powerful. Take extra care in becoming familiar with these brakes and exercise particular care when using them.

4. Disc brakes can get extremely hot with extended use. Be careful not to touch a disc brake until it has had plenty of time to cool.

5. Please see the brake manufacturer's instructions for operation and care of your disk brake. If you do not have the manufacturer's instructions, see
your dealer or contact the brake manufacturer.

1. Coaster Brake

a. How the coaster brake works

The coaster brake is a sealed mechanism which is a part of the bicycle's rear wheel hub. The brake is activated by reversing the rotation of the pedal cranks (see fig. 5). Start with the pedal cranks in a nearly horizontal position, with the front pedal in about the 4 o'clock position, and apply downward foot pressure on the pedal that is to the rear. About 1/8 turn rotation will activate the brake. The more downward pressure you apply, the more braking force, up to the point where the rear wheel stops rotating and begins to skid (see paragraph 3. Braking Technique, below).

⚠️ CAUTION: Before riding, make sure that the brake is working properly. If it is not working properly, have the bicycle checked by your dealer before you ride it.

b. Adjusting your coaster brake

Coaster brake service and adjustment requires special tools and special knowledge. Do not attempt to disassemble or service your coaster brake. Take the bicycle to your dealer for coaster brake service.

2. Hand Brakes

a. How hand brakes work

A bicycle with hand brakes may have one hand lever which operates a rear brake, or two hand levers, one of which operates on the front wheel and the other on the rear wheel. If your bicycle has two hand brakes, it's important to your safety that you instinctively know which brake lever controls which brake on your bike. In the U.S., bikes are required to be set up with the right brake lever controlling the rear brake, and the left lever controlling the front brake.

NOTE: If your bicycle is equipped with both front and rear brakes, most effective braking is achieved by using both brakes and apply them simultaneously. (See also par. 3. Braking technique, below).

⚠️ WARNING: Sudden or excessive application of the front brake may pitch the rider over the handlebars, which may result in serious injury or death.

The braking action of bicycle hand brakes is a function of the friction between the brake shoes and the wheel rim or brake disc. To make sure that you have maximum friction available, keep your wheel rims, brake shoes and brake discs clean and free of lubricants, waxes or polishes.

Make sure that your hands can reach and squeeze the brake levers comfortably. If your hands are too small to operate the levers comfortably, consult your dealer before riding the bike. The lever reach may be adjustable; or you may need a different brake lever design.

Some hand brakes have a quick release mechanism (figs. 7-10) to allow the brake shoes to clear the tire when a
wheel is removed or reinstalled. When the brake quick release is in the released position, the brakes are inoperative. Ask your dealer whether you have a quick release on your brakes; and if you do, make sure that you understand the way the brake quick release works, and check each time to make sure both brakes work correctly before you get on the bike.

WARNING: Some bicycle brakes, such as linear-pull (fig. 7) and disc (fig. 6) brakes, are extremely powerful. You should take extra care in becoming familiar with these brakes and exercise particular care when using them. Applying these brakes too hard or too suddenly can lock up a wheel, which could cause you to lose control and fall.

b. Adjusting your hand brakes

If either brake lever on your bike fails the Mechanical Safety Check (Section 1.C.) you may be able to restore brake lever travel by turning the brake cable adjusting barrel (fig. 11) counterclockwise; then lock the adjustment in by turning the barrel’s lock nut clockwise as far as it will go. If the lever still fails the Mechanical Safety Check, have your dealer check the brakes.

CAUTION: Some bicycles are equipped with a device called a Brake Rotor, which allows the steering mechanism to turn a full 360 degrees. Adjusting brakes equipped with a Brake Rotor requires special knowledge and skill. Do not attempt to adjust the front brake of a bicycle equipped with a Brake Rotor. Take the bicycle to a dealer for service and adjustment of the brakes. A rotor may also decrease the clearance between the front wheel and the pedals when the wheel is turned backwards.

3. Braking technique

Brakes are designed to control your speed, not just to stop the bike. *Maximum* braking force for a wheel occurs at the point just before the wheel “locks up” (stops rotating) and starts to skid. Once the tire skids, you actually lose most of your stopping force and all directional control. You need to practice slowing and stopping smoothly without locking up a wheel. The technique is called *progressive brake modulation*. Instead of slamming on the coaster brake or jerking the brake lever to the position where you think you’ll generate appropriate braking force, apply progressive force on the pedal or squeeze the lever, progressively increasing the braking force. If you feel the wheel begin to lock up, release pressure just a little to keep the wheel rotating just short of lockup. It’s important to develop a feel for the amount of brake pressure required for a wheel at different speeds and on different surfaces. To better understand this, experiment a little by riding your bike slowly in an unrestricted area and applying different amounts
of pressure to the brake, until the wheel locks.

When you apply the brake(s), the bike begins to slow, but your body wants to continue at the speed at which it was going. This causes a transfer of weight to the front wheel (or, under heavy braking with hand brakes, around the front wheel hub, which could send you flying over the handlebars). A wheel with more weight on it will accept greater brake pressure before lockup; a wheel with less weight will lock up with less brake pressure. So, as you apply brakes and your weight shifts forward, you need to shift your body toward the rear of the bike, to transfer weight back on to the rear wheel. With hand brakes, you can further improve brake performance by simultaneously decreasing rear braking and increasing front braking force. Shifting weight to the rear wheel is even more important on steep descents, because descents shift weight forward.

The keys to effective speed control and safe stopping are controlling wheel lockup and weight transfer. Practice braking and weight transfer techniques where there is no traffic or other hazards and distractions.

Everything changes when you ride on loose surfaces or in wet weather. Tire adhesion is reduced, so the wheels have less cornering and braking traction and can lock up with less brake force. Moisture or dirt on the brake shoes of hand brakes reduces their ability to grip. The way to maintain control on loose or wet surfaces is to go more slowly to begin with.

B. Wheels

1. Front Wheel Secondary Retention Devices

Most bicycles have front forks which utilize a secondary wheel retention device to keep the wheel from disengaging if its clamping mechanism is incorrectly adjusted. Secondary retention devices are not a substitute for correct wheel clamping.

Secondary retention devices fall into three basic categories (see figs. 12a, b & c):

 a. The clip-on type is a part which the manufacturer adds to the front wheel hub or front fork (fig. 12a).

 b. The integral type is molded, cast or machined into the outer faces of the front fork dropouts (fig. 12b).

 c. The washer type is a hat-shaped washer which fits into a matching hole in the front fork dropout (fig. 12c).

Ask your dealer to explain the particular secondary retention device on your bike.

⚠️ WARNING: Removing or disabling the secondary retention device is extremely dangerous and may lead to serious injury or death. It also may void the warranty.

NOTE: Some bicycles are equipped with a lever action quick release wheel retention mechanism. If your bicycle has quick release wheels, see Appendix C for information on how they work.

2. Removing a Bolt-On Front Wheel

 a. If your bicycle has a front wheel hand brake with quick release, open up the brake shoes (see Section 4.A.2.a. above).
b. With a correctly sized socket, box, open-end or adjustable wrench, loosen the two axle nuts.

c. If your front fork has a clip-on type secondary retention device, disengage it and go to step (4). If your front fork has an integral or a washer type secondary retention device, loosen the axle nuts enough to allow removal of the wheel; then go to step (4).

d. Raise the front wheel a few inches off the ground and tap the top of the wheel with the palm of your hand to knock the wheel out of the fork ends.

3. Installing a Bolt-On Front Wheel
a. With the steering fork facing forward, insert the wheel between the fork blades so that the axle seats firmly at the top of the slots which are at the tips of the fork blades. The axle nut washers should be on the outside, between the fork blade and the axle nut. If your bike has a clip-on or washer type secondary retention device, engage it.

b. While pushing the wheel firmly to the top of the slots in the fork dropouts, and at the same time centering the wheel rim in the fork, use a correctly sized socket, box, open end or adjustable wrench to tighten the axle nuts as tight as you can.

c. If your bicycle has a front wheel hand brake with quick release, close the brake shoes; then spin the wheel to make sure that it is centered in the frame and clears the brake shoes, and squeeze the brake lever to make sure the brake is functioning correctly.

4. Removing a Bolt-On Rear Wheel with Hand Brake
a. Open the rear brake shoes (see Section 4.A.2.a. above).

b. If the wheel is equipped with chain tension adjusters (fig. 14) loosen the nuts on the adjusters by turning both counterclockwise with a correctly sized open end or adjustable wrench an equal number of turns. This allows you to move the wheel as required by step (4) below.

c. With a correctly sized socket, box, open end or adjustable wrench, loosen the two axle nuts.

d. Push the wheel forward to slacken the chain, and remove the chain from the chainring and wheel sprocket.

e. Pull the wheel out of the frame.

5. Installing a Bolt-On Rear Wheel with Hand Brake
a. Put the chain on to the wheel sprocket. Then, insert the wheel into the frame dropouts and push it all the way in to the dropouts. The axle nut washers should be on the outside, between the frame and the axle nut.

b. Put the chain on to the chainring.

c. If your wheel has chain tension adjusters (fig. 14), position the chain tension adjusters in the dropouts and, using a wrench to turn the adjuster nuts clockwise, pull the wheel back in the dropouts so that it is straight in the frame and the chain has about 1/4 inches of up-and-down play. Replace chain adjuster end caps if provided.

d. Tighten the axle nuts as tightly as you can, using a correctly sized socket, box, open end or adjustable wrench.

e. Close the brake; then spin the wheel to make sure that it is centered in the frame and clears the brake shoes,
and squeeze the brake lever to make sure the brake is functioning correctly.

6. Removing a Bolt-On Rear Wheel with Coaster Brake
 a. Disengage the coaster brake arm from its frame bracket (see fig. 15).
 b. With a correctly sized socket, box, open end or adjustable wrench, loosen the two axle nuts.
 c. Push the wheel forward to slacken the chain, and remove the chain from the chainring and wheel sprocket.
 d. Pull the wheel out of the frame.

7. Installing a Bolt-On Rear Wheel with Coaster Brake
 a. Put the chain on to the wheel sprocket. Then, insert the wheel into the frame dropouts and push it all the way in to the dropouts. The axle nut washers should be on the outside, between the frame and the axle nut.
 b. Put the chain on to the chainring.
 c. Pull the wheel back in the dropouts so that it is straight in the frame and the chain has about 1/4 inches of up-and-down play.
 d. Secure the coaster brake arm to its frame bracket (see fig. 15), but do not fully tighten the securing nut and bolt.
 e. Tighten the axle nuts as tightly as you can, using a correctly sized socket, box, open end or adjustable wrench. Spin the wheel to make sure it is straight in the frame.
 f. Fully tighten the coaster brake arm securing nut and bolt and check to make sure the brake is functioning correctly.

C. Pedals
 1. Toe Overlap is when your toe can touch the front wheel when you turn the handlebars to steer while a pedal is in the forwardmost position. This is common on small-framed bicycles, and is avoided by keeping the inside pedal up and the outside pedal down when turning.

 ![Warning](Coaster Brake Arm Clamp)

 WARNING: Toe Overlap could cause you to lose control and fall. If you have toe overlap, exercise extra care when turning. A brake rotor (see Section 4.A.2.b) may also decrease the clearance between the front wheel and the pedal when the wheel is turned backwards.

 2. Some higher performance bicycles come equipped with pedals that have abrasive and potentially dangerous surfaces. These surfaces are designed to add safety by increasing adhesion between the rider’s shoe and the pedal. If your bicycle has this type of high-performance pedal, you must take extra care to avoid serious injury from the pedals’ sharp surfaces. Based on your riding style or skill level, you may prefer a less aggressive pedal design. Your dealer can show you a number of options and make suitable recommendations.

 3. Clipless pedals (sometimes called “step-in pedals”) are another means to keep feet securely in the correct position for maximum pedaling efficiency. They look like ski bindings ... a plate on the sole of the shoe clicks into a spring-loaded fixture on the pedal ... but unlike ski bindings, they only engage or disengage with a very specific motion which must be practiced to become instinctive. Clipless pedals require shoes and cleats which are compatible with the make and model pedal being used.

 Many clipless pedals are designed to allow the rider to adjust the amount of force needed to engage or disengage the foot. Follow the pedal manufacturer’s instructions, or
ask your dealer to show you how to make this adjustment. Use the easiest setting until engaging and disengaging becomes a reflex action, but always make sure that there is sufficient tension to prevent unintended release of your foot from the pedal.

⚠️ **WARNING:** Clipless pedals are intended for use with shoes specifically made to fit them and are designed to firmly keep the foot engaged with the pedal. Using shoes which do not engage the pedals correctly is dangerous.

Practice is required to learn to engage and disengage the foot safely. Until engaging and disengaging the foot becomes a reflex action, the technique requires concentration which can distract the rider’s attention, causing the rider to lose control and fall. Practice engaging and disengaging clipless pedals in a place where there are no obstacles, hazards or traffic; and be sure to follow the pedal manufacturer’s setup and service instructions. If you do not have the manufacturer’s instructions, see your dealer or contact the manufacturer.

Never do stunt riding with clipless pedals. If you lose control, your foot could remain engaged in the pedal, resulting in serious injury.

D. Bicycle Suspension

Many bicycles are equipped with suspension systems. There are many different types of suspension systems — too many to deal with individually in this Manual. If your bicycle has a suspension system of any kind, be sure to read and follow the suspension manufacturer’s setup and service instructions. If you do not have the manufacturer’s instructions, see your dealer or contact the manufacturer.

⚠️ **WARNING:** Failure to maintain, check and properly adjust the suspension system may result in suspension malfunction, which may cause you to lose control and fall.

If your bike has suspension, the increased speed you may develop also increases your risk of injury. For example, when braking, the front of a suspended bike dips. You could lose control and fall if you do not have experience with this system. Learn to handle your suspension system safely. See also Section 4.A.

⚠️ **WARNING:** Changing suspension adjustment can change the handling and braking characteristics of your bicycle. Never change suspension adjustment unless you are thoroughly familiar with the suspension system manufacturer’s instructions and recommendations, and always check for changes in the handling and braking characteristics of the bicycle after a suspension adjustment by taking a careful test ride in a hazard-free area.

Suspension can increase control and comfort by allowing the wheels to better follow the terrain. This enhanced capability may allow you to ride faster; but you must not confuse the enhanced capabilities of the bicycle with your own capabilities as a rider. Increasing your skill will take time and practice. Proceed carefully until you have learned to handle the full capabilities of your bike.

⚠️ **CAUTION:** Not all bicycles can be safely retrofitted with some types of suspension systems. Before retrofitting a bicycle with any suspension, check with the bicycle’s manufacturer.
to make sure that what you want to do is compatible with the bicycle’s design.

E. Tires and Tubes

1. Tires

Bicycle tires are available in many designs and specifications, ranging from general-purpose designs to tires designed to perform best under very specific weather or terrain conditions. If, once you've gained experience with your new bike, you feel that a different tire might better suit your riding needs, your dealer can help you select the most appropriate design.

The size, pressure rating, and on some high-performance tires the specific recommended use, are marked on the sidewall of the tire (see fig. 16). The part of this information which is most important to you is Tire Pressure.

⚠️ WARNING: Never inflate a tire beyond the maximum pressure marked on the tire’s sidewall. Exceeding the recommended maximum pressure may blow the tire off the rim, which could cause damage to the bike and injury to the rider and bystanders.

The best and safest way to inflate a bicycle tire to the correct pressure is with a bicycle pump which has a built-in pressure gauge.

⚠️ WARNING: There is a safety risk in using gas station air hoses or other air compressors. They are not made for bicycle tires. They move a large volume of air very rapidly, and will raise the pressure in your tire very rapidly, which could cause the tube to explode.

Tire pressure is given either as maximum pressure or as a pressure range. How a tire performs under different terrain or weather conditions depends largely on tire pressure. Inflating the tire to near its maximum recommended pressure gives the lowest rolling resistance; but also produces the harshest ride. High pressures work best on smooth, dry pavement.

Very low pressures, at the bottom of the recommended pressure range, give the best performance on smooth, slick terrain such as hard-packed clay, and on deep, loose surfaces such as deep, dry sand.

Tire pressure that is too low for your weight and the riding conditions can cause a puncture of the tube by allowing the tire to deform sufficiently to pinch the inner tube between the rim and the riding surface, or damage the wheel rim, making the wheel unsafe.

⚠️ CAUTION: Pencil type automotive tire gauges can be inaccurate and should not be relied upon for consistent, accurate pressure readings. Instead, use a high quality dial gauge.

Ask your dealer to recommend the best tire pressure for the kind of riding you will most often do, and have the dealer inflate your tires to that pressure. Then, check inflation as described in Section 1.C so you’ll know how correctly inflated tires should look and feel. Some tires may need to be brought up to pressure every week or two.

Some special high-performance tires have unidirectional treads: their tread pattern is designed to work better in one direction than in the other. The sidewall marking of
a unidirectional tire will have an arrow showing the correct rotation direction. If your bike has unidirectional tires, be sure that they are mounted to rotate in the correct direction.

2. Tire Valves

There are primarily two kinds of bicycle tube valves: The Schraeder Valve and the Presta Valve. The bicycle pump you use must have the fitting appropriate to the valve stems on your bicycle.

The Schraeder valve (fig. 17) is like the valve on a car tire. To inflate a Schraeder valve tube, remove the valve cap and clamp the pump head onto the end of the valve stem. To let air out of a Schraeder valve, depress the pin in the end of the valve stem with the end of a key or other appropriate object.

The Presta valve (fig. 18) has a narrower diameter and is only found on bicycle tires. To inflate a Presta valve tube using a Presta headed bicycle pump, remove the valve cap; unscrew (counterclockwise) the valve stem lock nut; and push down on the valve stem to free it up. Then push the pump head on to the valve head, and inflate. To inflate a Presta valve with a Schraeder pump fitting, you need a Presta adapter (available at your bike shop) which screws on to the valve stem once you’ve freed up the valve. The adapter fits into the Schraeder pump fitting. Close the valve after inflation. To let air out of a Presta valve, open up the valve stem lock nut and depress the valve stem.

WARNING: Patching a tube is an emergency repair. If you do not apply the patch correctly or apply several patches, the tube can fail, resulting in possible tube failure, which could cause you to loose control and fall. Replace a patched tube as soon as possible.

5. Service

WARNING: Technological advances have made bicycles and bicycle components more complex, and the pace of innovation is increasing. It is impossible for this manual to provide all the information required to properly repair and/or maintain your bicycle. In order to help minimize the chances of an accident and possible injury, it is critical that you have any repair or maintenance which is not specifically described in this manual performed by your dealer. Equally important is that your individual maintenance requirements will be determined by everything from your riding style to geographic location. Consult your dealer for help in determining your maintenance requirements.

WARNING: Many bicycle service and repair tasks require special knowledge and tools. Do not begin any adjustments or service on your bicycle until you have learned from your dealer how to properly complete them. Improper adjustment or service may result in damage to the bicycle or in an accident which can cause serious injury or death.

If you want to learn to do major service and repair work on your bike, you have three options:

1. Ask your dealer for copies of the manufacturer’s installation and service instructions for the components on your bike, or contact the component manufacturer.
2. Ask your dealer to recommend a book on bicycle repair.
3. Ask your dealer about the availability of bicycle repair courses in your area.

Regardless of which option you select, we recommend that you ask your dealer to check the quality of your work the first time you work on something and before you ride the bike, just to make sure that you did everything correctly. Since that will require the time of a mechanic, there may be a modest charge for this service.

A. Service Intervals

Some service and maintenance can and should be performed by the owner, and requires no special tools or knowledge beyond what is presented in this manual.

The following are examples of the type of service you should perform yourself. All other service, maintenance and repair should be performed in a properly equipped facility by a qualified bicycle mechanic using the correct tools and procedures specified by the manufacturer.

1. Break-in Period: Your bike will last longer and work better if you break it in before riding it hard. Control cables and wheel spokes may stretch or “seat” when a new bike is first used and may require readjustment by your dealer. Your Mechanical Safety Check (Section 1.C) will help you identify some things that need readjustment. But even if everything seems fine to you, it’s best to take your bike back to the dealer for a checkup. Dealers typically suggest you bring the bike in for a 30 day checkup. Another way to judge when it’s time for the first checkup is to bring the bike in after three to five hours of hard off-road use, or about 10 to 15 hours of on-road or more casual off-road use. But if you think something is wrong with the bike, take it to your dealer before riding it again.

2. Before every ride: Mechanical Safety Check (Section 1.C)

3. After every long or hard ride if the bike has been exposed to water or grit, or at least every 100 miles: Clean the bike and lightly oil the chain. Wipe off excess oil. Lubrication is a function of climate. Talk to your dealer about the best lubricants and the recommended lubrication frequency for your area.

4. After every long or hard ride or after every 10 to 20 hours of riding:

• Squeeze the front brake (if you have one) and rock the bike forward and back. Everything feel solid? If you feel a clunk with each forward or backward movement of the bike, you probably have a loose headset. Have your dealer check it.

• Lift the front wheel off the ground and swing it from side to side. Feel smooth? If you feel any binding or roughness in the steering, you may have a tight headset. Have your dealer check it.

• Grab one pedal and rock it toward and away from the centerline of the bike; then do the same with the other pedal. Anything feel loose? If so, have your dealer check it.

• Take a look at the brake pads. Starting to look worn or not hitting the wheel rim squarely? Time to have the dealer adjust or replace them.

• Carefully check the control cables and cable housings. Any rust? Kinks? Fraying? If so, have your dealer replace them.

• Squeeze each adjoining pair of spokes on either side of each wheel between your thumb and index finger. Do they all feel about the same? If any feel loose, have your dealer check the wheel for tension and trueness.

• Check the frame, particularly in the area around all tube joints; the handlebars; the stem; and the seatpost for any deep scratches, cracks or discoloration. These are signs
of stress-caused fatigue and indicate that a part is at the end of its useful life and needs to be replaced.

- Check to make sure that all parts and accessories are still secure, and tighten any which are not.

⚠️ WARNING: Like any mechanical device, a bicycle and its components are subject to wear and stress. Different materials and mechanisms wear or fatigue from stress at different rates and have different life cycles. If a component's life cycle is exceeded, the component can suddenly and catastrophically fail, causing serious injury or death to the rider. Scratches, cracks, fraying and discoloration are signs of stress-caused fatigue and indicate that a part is at the end of its useful life and needs to be replaced. While the materials and workmanship of your bicycle or of individual components may be covered by a warranty for a specified period of time by the manufacturer, this is no guarantee that the product will last the term of the warranty. Product life is often related to the kind of riding you do and to the treatment to which you subject the bicycle. The bicycle's warranty is not meant to suggest that the bicycle cannot be broken or will last forever. It only means that the bicycle is covered subject to the terms of the warranty.

5. As required: If either brake lever fails the Mechanical Safety Check (Section 1.C), don't ride the bike. Have your dealer check the brakes.

6. Every 25 (hard off-road) to 50 (on-road) hours of riding: Take your bike to your dealer for a complete checkup.

B. If your bicycle sustains an impact:
First, check yourself for injuries, and take care of them as best you can. Seek medical help if necessary.

Next, check your bike for damage, and fix what you can so you can get home. Then, take your bicycle to your dealer for a thorough check.

⚠️ WARNING: A crash or other impact can put extraordinary stress on bicycle components, causing them to fatigue prematurely. Components suffering from stress fatigue can fail suddenly and catastrophically, causing loss of control, serious injury or death.
Appendix A

Teaching your Child the Rules

In addition to The Basics (page 6), Riding Safely (page 7), Off Road Safety (page 8), Wet Weather Riding (page 9), Night Riding (page 9), Bicycling in Traffic (page 10 and Appendix B) and Downhill, Stunt and Competition Biking (page 10), kids need to be taught ... and to have frequently reinforced ... the following rules and lessons which adults are already expected to know. We urge you to take the time to familiarize yourself with these rules and to teach them to your child before you let your child ride unsupervised.

1. Rules
 - No playing in the road or in the street.
 - No riding on busy streets.
 - No riding at dawn, dusk or at night.
 - Stop for all STOP signs.
 - Ride on the right of traffic.

2. Lessons
 The lessons that follow relate to some of the most common real situations that children encounter when riding their bikes. Go over these situations with your child and make sure the lesson objective is accomplished.

a. Driveway Rideout
 When a youngster rides out of the driveway and is struck by a car, that is called a rideout accident.

 What can you do? First, realize the danger of your own driveway. If there are obstructions to the view of passing motorists (like bushes or trees), trim them back. You might park your car in front of the driveway, if local ordinance permits. This way, your child can’t use the driveway as a launching pad. But the most important thing you can do is teach your child about driveway safety. Take your child outside to the driveway and have him/her practice the following steps:
 1) Stop before entering the street.
 2) Look left, right and left again for traffic.
 3) If there’s no traffic, proceed into the roadway.

b. Running the Stop Sign
 Car/bike crashes can happen when a cyclist runs a stop sign. Most cyclists who get hit riding through stop signs know that they were supposed to stop. They just thought it would be OK this time; or they may have been distracted. The thing to impress upon your child is that while he/she may not get hit every time, running stop signs will eventually result in an accident.

 What can you do? Take your child to a stop sign near home. Explain what it means by emphasizing the following points:
 1) Stop at all stop signs, regardless of what is happening.
 2) Look in all directions for traffic.
 3) Watch for oncoming cars making left turns.
 4) Watch for cars behind you making right turns.
 5) Wait for any cross traffic to clear.
 6) Proceed when safe.

 In order to make this lesson stick, you may have to change your own driving habits. If you creep through intersections controlled by stop signs, you are showing your child that you don’t really believe what you preach. For your child’s sake, stop at stop signs.

c. Turning Without Warning
 Another major accident type involves cyclists who make unexpected left turns. They neither look behind for traffic, nor
do they signal. The key factor here is neglecting to look to the rear. If the cyclist had looked, he/she would have seen the danger coming up from behind.

What can you do? Of course, you ought to teach your child not to ride across busy streets - at least until the child has had some advanced training and is old enough to understand traffic. But in the meantime, for residential street riding, you can teach your child to always look **and** signal before turning left. A big part of this lesson is teaching the child how to look to the rear without swerving.

Take your child to a playground or a safe area away from traffic or obstructions to practice riding along a straight line while looking behind. Stand alongside and hold up a different number of fingers on your hand after the child rides by. Call his/her name. After 15 minutes of practice, a ten year old should be able to look behind his/herself and identify how many fingers you are holding up - without swerving.

d. **Riding** at Dawn, at Dusk or at Night
(See also Section 4.F., page 19).

Most car/bicycle accidents happen at night where an overtaking car hits a bike. (An overtaking car is one that comes up from behind and passes the cyclist on the left.) These overtaking accidents can be very serious.

What can you do? First, you should keep your youngster from riding at dawn, dusk or at night. It requires special skills and equipment. Few children have either. Secondly, make sure your child understands that if he/she gets caught out at dusk or after dark on a bike, the thing to do is to call you for a ride home. One suggestion is to tape a phone number and money to the bike so that, in an emergency, the child will be able to call home.

e. **Following the Leader**

There is increased risk of car/bike collision if children are following each other, because if the first one does something dangerous, those following may do it too.

What can you do? Teach your child to always assess the traffic situation for him/herself. When a group is riding around, each cyclist should stop for stop signs; each cyclist should look to the rear before making left turns; and so on. One way to get the message across is to play a game with the child similar to ‘Simon Says’. In this game, however, the emphasis should not be on doing what ‘Simon Says’, but rather have the child make a decision based on the situation. The child should learn to ignore what ‘Simon Says’. Children need to learn to think for themselves to ride safely.

SUMMARY

Teach your child early - the earlier the better. Learning skills such as looking and avoiding hazards takes time. Be prepared to repeat lessons until your child understands what you’re trying to get across. Be patient. Your efforts will be rewarded, knowing that your child is aware of safe riding skills.
Appendix B
Bicycling in Traffic

Obey traffic signs and signals—Bicycles must drive like other vehicles if they are to be taken seriously by motorists.

Never ride against traffic—Motorists aren’t looking for bicyclists riding on the wrong side of the road.

Use hand signals—Hand signals, using your left arm, tell motorists what you intend to do. Signal as a matter of law, courtesy and safety.

Ride in a straight line—Whenever possible, ride in a straight line, to the right of traffic, but about a car door’s width away from parked cars.

Don’t weave between parked cars—Don’t ride out to the curb between parked cars unless they are far apart. Motorists may not see you when you try to move back into traffic.

Ride in middle of lane in slow traffic—Get in the middle of the lane at busy intersections and whenever you are moving at the same speed as traffic.

Follow lane markings—Don’t turn left from right lane. Don’t go straight in a lane marked ‘Right Turn Only.’

Choose best way to turn left—There are two ways to make a left turn. #1 Like an auto—Signal, move into the left lane and turn left. #2 Like a pedestrian—Ride straight to the far side crosswalk. Walk your bike across.

Don’t pass on the right—Motorists may not look for or see a bicycle passing on the right.

Go slow on sidewalks—Pedestrians have the right of way. By law, you must give pedestrians audible warning when you pass. Don’t cross driveways or intersections without slowing to a walker’s pace and looking very carefully for traffic (especially traffic turning right on a green light).
Watch for cars pulling out — Make eye contact with driver. Assume they don’t see you until you are sure they do.

Scan the road behind — Learn to look back over your shoulder without losing your balance or swerving left. Some riders use rear view mirrors.

Avoid road hazards — Watch out for parallel skid sewer grates, slippery manhole covers, oily pavement, gravel and ice. Cross railroad tracks carefully at right angles. To get better control as you move across bumps and other hazards, stand up on your pedals.

Keep both hands ready to brake — You may not stop in time if you brake one-handed. Allow extra distance for stopping in the rain, since brakes are less efficient when wet.

Watch for chasing dogs — Ignore them or try a firm “No!” If the dog doesn’t stop, dismount with your bike between you and the dog. Dogs are attracted to spinning wheels and feet.
Appendix C

Wheel and Seat Post Quick Release Mechanisms

A. Quick Release Wheels

1. How a Wheel Quick Release Works

 ![Diagram of a wheel quick release mechanism]

 WARNING: Riding with an improperly adjusted wheel quick release can allow the wheel to wobble or disengage from the bicycle, causing serious injury or death to the rider. Therefore, it is essential that you:
 1. Ask your dealer to help you make sure you know how to install and remove your wheels safely.
 2. Understand and apply the correct technique for clamping your wheel in place with a quick release.
 3. Each time, before you ride the bike, check that the wheel is securely clamped.

 The wheel quick release uses a cam action to clamp the bike’s wheel in place (see fig. 19). Because of its adjustable nature, it is critical that you understand how it works, how to use it properly, and how much force you need to apply to secure the wheel.

 WARNING: The full force of the cam action is needed to clamp the wheel securely. Holding the nut with one hand and turning the lever like a wing nut with the other hand until everything is as tight as you can get it will not clamp the wheel safely in the dropouts.

 a. Adjusting the quick release mechanism

 The wheel hub is clamped in place by the force of the quick release cam pushing against one dropout and pulling the tension adjusting nut, by way of the skewer, against the other dropout. The amount of clamping force is controlled by the tension adjusting nut. Turning the tension adjusting nut clockwise while keeping the cam lever from rotating increases clamping force; turning it counterclockwise while keeping the cam lever from rotating reduces clamping force. Less than half a turn of the tension adjusting nut can make the difference between safe clamping force and unsafe clamping force.

 b. Front Wheel Secondary Retention Devices

 Most bicycles have front forks which utilize a secondary wheel retention device to keep the wheel from disengaging if its clamping mechanism is incorrectly adjusted. Secondary retention devices are not a substitute for correct wheel clamping.

 Secondary retention devices fall into three basic categories (see Section 4.B figs. 12a, b &c):
 1. The clip-on type is a part which the manufacturer adds to the front wheel hub or front fork (fig. 12a).
 2. The integral type is molded, cast or machined into the outer faces of the front fork dropouts (fig. 12b).
 3. The washer type is a hat-shaped washer which fits into
a matching hole in the front fork dropout (fig. 12c).

Ask your dealer to explain the particular secondary retention device on your bike.

⚠️ WARNING: Removing or disabling the secondary retention device is extremely dangerous and may lead to serious injury or death. It also may void the warranty.

2. Removing and Installing Quick Release Wheels
 a. Removing a Quick Release Front Wheel
 (1) If your bike has rim brakes, disengage the brake’s quick-release mechanism to open the clearance between the wheel rim and the brake pads (See Section 4.A figs. 7 through 10).
 (2) Move the wheel’s quick-release lever from the locked or CLOSED position to the OPEN position (figs. 20a & b).
 (3) If your front fork does not have a secondary retention device go to step (5).
 (4) If your front fork has a clip-on type secondary retention device, disengage it and go to step (5). If your front fork has an integral secondary retention device, loosen the tension adjusting nut enough to allow removing the wheel; then go to the next step.
 (5) Raise the front wheel a few inches off the ground and tap the top of the wheel with the palm of your hand to knock the wheel out of the fork.
 b. Installing a Quick Release Front Wheel
 ⚠️ CAUTION: If your bike is equipped with disk brakes, be careful not to damage the disk, caliper or brake pads when re-inserting the disk into the caliper. Never activate a disk brake’s control lever unless the disk is correctly inserted in the caliper. See also Section 4.A.

 (1) Move the quick-release lever so that it curves away from the wheel (fig. 20b). This is the OPEN position.
 (2) With the steering fork facing forward, insert the wheel between the fork blades so that the axle seats firmly at the top of the slots which are at the tips of the fork blades — the fork dropouts. The quick-release lever should be on the left side of the bicycle (fig. 20a & b). If your bike has a clip-on type secondary retention device, engage it.
 (3) Holding the quick-release lever in the OPEN position with your right hand, tighten the tension adjusting nut with your left hand until it is finger tight against the fork dropout (fig. 19).
 (4) While pushing the wheel firmly to the top of the slots in the fork dropouts, and at the same time centering the wheel rim in the fork, move the quick-release lever upwards and swing it into the CLOSED position (fig. 19 & 20a). The lever should now be parallel to the fork blade and curved toward the wheel. To apply enough clamping force, you should have to wrap your fingers around the fork blade for leverage, and the lever should leave a clear imprint in the palm of your hand.

 ⚠️ WARNING: Securely clamping the wheel takes considerable force. If you can fully close the quick release without wrapping your fingers around the fork blade for leverage, and the lever does not leave a clear imprint in the palm of your hand, the tension is insufficient. Open the lever; turn the tension adjusting nut clockwise a quarter turn; then try again.
(5) If the lever cannot be pushed all the way to a position parallel to the fork blade, return the lever to the OPEN position. Then turn the tension adjusting nut counterclockwise one-quarter turn and try tightening the lever again.

(6) Re-engage the brake quick-release mechanism to restore correct brake pad-to-rim clearance; spin the wheel to make sure that it is centered in the frame and clears the brake pads; then squeeze the brake lever and make sure that the brakes are operating correctly.

⚠️ WARNING: Secondary retention devices are not a substitute for correct quick release adjustment. Failure to properly adjust the quick release mechanism can cause the wheel to wobble or disengage, which could cause you to lose control and fall, resulting in serious injury or death.

c. Removing a Quick Release Rear Wheel

(1) Shift the rear derailleur to high gear (the smallest, outermost rear sprocket).

(2) If your bike has rim brakes, disengage the brake’s quick-release mechanism to open the clearance between the wheel rim and the brake pads (see Section 4.A, figs. 7 through 10).

(3) Pull the derailleur body back with your right hand.

(4) Move the quick-release lever to the OPEN position (fig. 20b).

(5) Lift the rear wheel off the ground a few inches and, with the derailleur still pulled back, push the wheel forward and down until it comes out of the rear dropouts.

d. Installing a Quick Release Rear Wheel

NOTE: If your bike is equipped with disk brakes, be careful not to damage the disk, caliper or brake pads when re-inserting the disk into the caliper. Never activate a disk brake’s control lever unless the disk is correctly inserted in the caliper.

(1) Shift the rear derailleur to its outermost position

(2) Pull the derailleur body back with your right hand.

(3) Move the quick-release lever to the OPEN position (see fig. 20a & b). The lever should be on the side of the wheel opposite the derailleur and freewheel sprockets.

(4) Put the chain on top of the smallest freewheel sprocket. Then, insert the wheel into the frame dropouts and pull it all the way in to the dropouts.

(5) Tighten the quick-release adjusting nut until it is finger tight against the frame dropout; then swing the lever toward the front of the bike until it is parallel to the frame’s chainstay or seatstay and is curved toward the wheel (fig. 20b). To apply enough clamping force, you should have to wrap your fingers around a frame tube for leverage, and the lever should leave a clear imprint in the palm of your hand.

⚠️ WARNING: Securely clamping the wheel takes considerable force. If you can fully close the quick release without wrapping your fingers around the seatstay or chainstay for leverage, and the lever does not leave a clear imprint in the palm of your hand, the tension is insufficient. Open the lever; turn the tension adjusting nut clockwise a quarter turn; then try again.

(6) If the lever cannot be pushed all the way to a position parallel to the chainstay or seatstay tube, return the lever to the OPEN position. Then turn the adjusting nut counterclockwise one-quarter turn and try tightening again.

(7) Push the rear derailleur back into position.

(8) Re-engage the brake quick-release mechanism to restore correct brake pad-to-rim clearance; spin the wheel to
make sure that it is centered in the frame and clears the brake pads; then squeeze the brake lever and make sure that the brakes are operating correctly.

B. Seatpost Quick Release

Some bikes are equipped with a quick-release seat post binder. The seatpost quick-release binder works exactly like the wheel quick-release (Appendix B. A. 1.) While a quick release looks like a long bolt with a lever on one end and a nut on the other, the quick release uses a cam action to firmly clamp the seat post (see fig. 19).

⚠️ WARNING: Riding with an improperly tightened seat post can allow the saddle to turn or move and cause you to lose control and fall. Therefore:

1. Ask your dealer to help you make sure you know how to correctly clamp your seat post.
2. Understand and apply the correct technique for clamping your seat post quick release.
3. Before you ride the bike, first check that the seatpost is securely clamped.

1. Adjusting the seatpost quick release mechanism

The action of the quick release cam squeezes the seat collar around the seat post to hold the seat post securely in place. The amount of clamping force is controlled by the tension adjusting nut. Turning the tension adjusting nut clockwise while keeping the cam lever from rotating increases clamping force; turning it counterclockwise while keeping the cam lever from rotating reduces clamping force. Less than half a turn of the tension adjusting nut can make the difference between safe and unsafe clamping force.

⚠️ WARNING: The full force of the cam action is needed to clamp the seatpost securely. Holding the nut with one hand and turning the lever like a wing nut with the other hand until everything is as tight as you can get it will not clamp the seatpost safely.

⚠️ WARNING: If you can fully close the quick release without wrapping your fingers around a frame tube for leverage, and the lever does not leave a clear imprint in the palm of your hand, the tension is insufficient. Open the lever; turn the tension adjusting nut clockwise a quarter turn; then try again.
DIAMONDBACK bicycles are distributed by Raleigh America, Inc.

Raleigh America, Inc. Bicycle Limited Warranty

It is the owner’s responsibility to thoroughly read and understand the owner’s manual and regularly examine the product to determine the need for professional, authorized service or replacement. Please consult an authorized Raleigh America, Inc. bicycle dealership with any questions on use and maintenance. Regardless of the length of the warranty, Raleigh America, Inc. does not infer that the bicycle will last forever or cannot be broken. All Raleigh/Diamondback framesets and bicycles have a finite, limited useful product life cycle. The length of this useful life cycle will vary by environment, riding conditions, frame material and construction, riding style, maintenance, and the amount as well as type of use the bicycle or frame is subjected to. A worn out bicycle does not indicate it is warrantable, rather that the bicycle has outlived (exceeded) its useful product cycle.

Raleigh America, Inc. warrants this new Raleigh America, Inc. bicycle frame against defects in material and workmanship, subject to the following limitations, terms, and conditions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Warranty Term Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel bicycle frames with wheel size less than 20"</td>
<td>Lifetime, for as long as the original retail purchaser owns the bicycle*</td>
</tr>
<tr>
<td>Steel bicycle frames with 24", 26", or 700c wheels</td>
<td>Lifetime, for as long as the original retail purchaser owns the bicycle*</td>
</tr>
<tr>
<td>Alloy bicycle frames with 24", 26", or 700c wheels</td>
<td>Lifetime, for as long as the original retail purchaser owns the bicycle*</td>
</tr>
<tr>
<td>Full Carbon Fiber or Carbon fiber/alloy bicycle frames with 24", 26", or 700c wheels</td>
<td>Lifetime, for as long as the original retail purchaser owns the bicycle*</td>
</tr>
<tr>
<td>Full Suspension bicycle frames</td>
<td>Five years from the date of original retail purchase to the original purchaser*</td>
</tr>
<tr>
<td>Forks, Non-branded</td>
<td>Five years from the date of original retail purchase</td>
</tr>
<tr>
<td>Forks, Branded</td>
<td>Covered under the fork manufacturer’s warranty. Consult dealer for details.</td>
</tr>
<tr>
<td>Components, Branded</td>
<td>Covered under the component manufacturer’s warranty. Consult dealer for details.</td>
</tr>
<tr>
<td>Components, Non-branded</td>
<td>One year from the date of original retail purchase</td>
</tr>
<tr>
<td>Suspension parts including but not limited to bushings, pivot bearing, link plates, bolts, fasteners, chain stays, seat stays, and shock units</td>
<td>One year from the date of original retail purchase under the condition that the bicycle is regularly maintained as well as operated under normal riding conditions</td>
</tr>
<tr>
<td>Finish and decals</td>
<td>One year from the date of original retail purchase</td>
</tr>
<tr>
<td>Labor, frame replacement</td>
<td>One year from the date of original retail purchase</td>
</tr>
<tr>
<td>Labor, parts replacement</td>
<td>Thirty days from the date of original retail purchase</td>
</tr>
</tbody>
</table>

1. This warranty only applies to the original retail purchaser and is not transferable.
2. Specific model exceptions to this warranty are noted with the bicycle documentation.
3. Raleigh America, Inc.’s sole obligation during the acceptable duration of this warranty is, AT RALEIGH AMERICA, INC.’S OPTION, to repair or replace the product with a current item that is equivalent in construction, design, or value.
4. Raleigh America, Inc.’s liability under this limited warranty shall never exceed the amount of the original purchase.

To obtain service under this warranty, you must:
1. Return your fully assembled Raleigh America, Inc. bicycle to an authorized Raleigh America, Inc. bicycle dealer within the United States of America.
2. Provide proof of purchase, including but not limited to the retail bill of sale, your credit or debit card receipt, or other satisfactory proof of the date of purchase.
3. The proof of purchase must indicate the bicycle was sold fully assembled and adjusted by an authorized Raleigh America, Inc. dealer within the United States of America.
4. Sales where the bicycle was delivered in a carton to the end user (e.g. mail order or Internet sales) void the warranty.

This warranty does not apply to damage or failure due to:
1. Accidents, alteration, abuse, neglect.
3. Improper assembly, maintenance, or installation of parts or accessories not originally intended to be compatible with the bicycle as sold, including but not limited to power assist accessories, forks, brakes, or tires different from original specification.
4. Commercial use, racing or competition, stunting, jumping, trick riding, ramp riding, aggressive riding, riding with excessive loads, lack of technical skill, competence, or experience of the user.
5. Bicycle frames, which have been repaired (e.g. welded or bonded), repainted, or had the original decals removed.
6. Frames, forks, wheels, axles, handlebars, and stems, which are bent from just riding along, can be a sign of misuse or abuse and are not covered under this warranty.
7. Personal transportation costs or product freight costs to or from an authorized Raleigh America, Inc. bicycle dealer.
8. Any additional costs associated with the incompatibility of existing parts and the replacement frame or fork.

Warranty replacement frames must be fully assembled by an authorized dealer to maintain the warranty coverage. The warranty for the replacement frame shall be the warranty offered for the equivalent bicycle’s frame of that model year. If not assembled by the dealer, replacement frames are considered aftermarket frames. After market frames are only warranted for one year from the date of purchase for the original purchaser. This one-year warranty excludes any issues that can be traced to assembly or component incompatibility.

This warranty is expressly in lieu of all other warranties, and any implied warranties of merchantability or fitness for a particular purpose created hereby, are limited to the same duration as the express warranty herein. Raleigh America, Inc. shall not be liable for any incidental or consequential damages. Some states do not allow the exclusion or limitations of implied warranties, incidental or consequential, so the above limitations and exclusions may not apply to you.

Retailers and wholesale outlets for Raleigh America, Inc. products are not authorized to modify this warranty in any way.

This warranty gives the original owner specific legal rights. Other additional rights may vary from state to state.